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Interactivity generates paradox in that the interactive control by one system C of 
predicates about another system-under-study S may falsify these predicates. We 
formulate an "interactive logic" to resolve this paradox of interactivity. Our 
construction generalizes one, the Galois connection, used by Von Neumann for 
the similar quantum paradox. We apply the construction to a transition ~vstem, a 
concept that includes general systems, automata, and quantum systems. In some 
(classical) automata S, the interactive predicates about S show quantumlike 
complementarity arising from interactivity: The interactive paradox generates the 
quantum paradox. Some classical S's have noncommutative algebras of interac- 
tively observable coordinates similar to the Heisenberg algebra of a quantum 
system. Such S's are "hidden variable" models of quantum theory, not covered 
by the hidden variable studies of Von Neumann, Bohm, Bell, or Kochen and 
Specker. It is conceivable that some quantum effects in Nature arise from 
interactivity. 

1. I N T R O D U C T I O N  

1. The  famous  incomple tenesses  associa ted  with the names  of  Einstein 
and G r d e l  are bo th  l imi ta t ions  on our  ab i l i ty  to pred ic t  act iv i ty  of a 
q u a n t u m  and  an au tomaton ,  respectively.  Both involve self-referent ial  activ- 
i ty impor t an t ly :  G r d e l ' s  theorem derives f rom the p a r a d o x  of  " T h i s  state-  
ment  is false";  accord ing  to Bohr  (and see Wheeler ,  1982) a q u a n t u m  
p h e n o m e n o n  includes  its own observat ion .  It is na tura l  to ask, therefore,  the 
following: 

Question I: Are  these incomple tenesses  aspects  of  one under ly ing  
pr inciple? 

This includes  the quest ion:  Can q u a n t u m  pa radoxes  be pa radoxes  of 
self-reference? This  poss ib i l i ty  has also been cons idered  by Brown (1969) 
and K a u f m a n n  and Varela  (pr ivate  communica t ions ) ,  and  Zwick (1978). 
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The G6del incompleteness deals with theorem-proving automata, while 
Einstein's has to do with quantum systems. To unite these we must find a 
common language for these two kinds of system. Question I thus leads to 
the following: 

Question H: What system concept appropriately encompasses both 
quanta and automata? (See Section 3.) 

2. Let S be the system under study and C the control system (possibly 
including ourselves) throughout this paper. "Control" includes preparation 
and measurement; creation, modification, and destruction. In order to 
recognize when quantum effects occur in S, we seek the effective interactive 
predicate algebra of S relative to C. When this algebra is nondistributive (or, 
in another widespread formulation, partial; see Kochen and Specker 1967), 
the whole system CS exhibits quantum complementarity. Thus Question I 
also leads to the following: 

Question III: What is the interactive predicate algebra of S? (See 
Section 4.) 

3. Question III confronts us with the paradox of interactivity: Control 
falsifies. In general, the interactive control by C of a predicate about S will 
falsify that predicate. Question III thus includes the following question: Can 
the interactive paradox generate quantum paradoxes? 

When a classical S has an interactive predicate algebra of the quantum 
kind, CS provides a classical model of quantum theory; in the terminology 
of Von Neumann (1932), a "hidden variables" theory of the quantum 
paradoxes. Thus the answer to Question III will also tell us if hidden 
variables can account for quantum indeterminacy and complementarity. 

4. Question III is a sharpening and a generalization of questions that 
have long been asked about computers and other automata. The control of 
computer properties (i.e., predicates) through data channels alone is a 
matter of great practical importance, and is studied by Moore (1956) and 
many others. It is a natural extension of that work to ask for the predicate 
algebra of the properties that are thus controllable. 

5. Interactive logic, unlike classical, deals with time. When we control 
(the truth of) predicates about a system, the time order of the control 
operations effects the results of our experiments. Let us call such a logic 
noncommutative. The commutative Boolean logic is a degenerate idealized 
limit of noncommutative logic. Noncommutative logic first appears in the 
quantum theory of Von Neumann (1932). That noncommutative logic 
applies to macroscopic situations (as well as to quantum situations, which 
are usually microscopic) is often asserted. Bohr's suggestions of com- 
plementarity in psychology may be considered instances. Resemblances 
between automata and quantum systems have also been pointed out long 
ago. Moore (1956, p. 138) speaks of "an analogue of the uncertainty 
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principle," illustrating it with a specific four-state Moore machine (para- 
graph 20) termed by Conway (197 l) "Moore's Uncertainty Principle." Here 
we compare the interactive predicate algebras of quanta and automata. Our 
construction generalizes one used by Von Neumann for quantum systems, 
the Galois connection (paragraph 28). It suggests a formulation and solution 
of the "hidden variables" problem of Von Neumann (Section 5). This raises 
our final question: 

Question IV." Do automata, like quanta, have noncommutative Heisen- 
berg algebras of coordinates? (See Section 6.) 

2. BASIC ASSUMPTIONS 

6. Question I brings in the limited complexity of CS (Chaitin 1966, 
1982). In this first approach we put aside Question I and deal naively with 
Questions II, III, and IV, assuming that there are infinite time, space, and 
materiel for any experiments and calculations we wish to do and record. 

7. We make no assumptions about the determinism of the systems we 
study. The quantum effects we study here arise in both determinate and 
indeterminate systems. They arise not from an underlying indeterminacy 
but solely from interactivity, specifically the interference of interactive 
controls. Although we limit ourselves in the main to finite automata, infinity 
too is irrelevant to the quantum effects we study. 

8. Von Neumann emphasized the importance of probabilistic logics. 
Indeed, the probability of a transition is more informative than the possibil- 
ity of a transition, which we study. Yet a probability estimate for some 
event to occur in one system, if it is to be useful, must be approximately 
equivalent to a certain highly special yes-or-no predicate about a suitable set 
or ensemble of similar systems; a predicate about frequency of occurrence 
in the set. Thus probability theory is the poor man's set theory. Since there 
are other important reasons for developing set theory, we put aside proba- 
bility estimates until after that development. In any case, a knowledge of the 
yes-or-no possibilities and necessities together determine the probabilities 
of quantum theory, in accord with the quantum law of large numbers 
(Finkelstein, 1963). 

9. A theory of one class of phenomena may belong to two domains 
(among others) that we must distinguish for clarity. For theories in domain 
S (as we shall call it), the controller C does not enter explicitly into the 
equations but only indirectly if at all, in principles of relativity and 
coordinate transformations. In domain S, measurements on S give us 
coordinates of S. In domain S we are unselfconscious, extroverted, and 
pragmatic. 
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In domain CS, C enters explicitly into the equations of the theory 
together with S. Indeed, it may be a problem to separate S and C in domain 
CS. In domain CS, measurements (the same ones mentioned in connection 
with domain S)  are expressed in the theory as interactions between C and S, 
during which the coordinates of S may change. At the limit of domain CS is 
the universal theory, where CS is the whole universe. In domain CS we are 
self-conscious, introspective, and grandiose. 

It is important to state the domain explicitly even when the same 
equations can be interpreted in either domain. The enthusiastic physicist 
may decide that his beloved equations, Einstein's, Schroedinger's, or 
whatever, can be used in either domain S, as they were originally designed, 
or CS. He then has two distinct theories with one set of symbols and 
equations. The difference is entirely in the semantics of his two theories, not 
in the syntax: The same experience leads him to utter syntactically different 
expressions in the same syntactic system, depending on the domain. 

In the domain of microphysics our experiences are strongly shaped by 
the natures of both C and S. To move a theory from domain CS to S we 
randomize and average over C, likely with great change in syntax. We 
expect then that the CS theory is virtually unrecognizable from the S 
theory. (This possibility is denied by the kind of operationalism which 
requires even a universal theory to speak in terms of operational observa- 
bles.) Then it is even more important to state the domain of the theory. 

In this work we enter domain CS. To be sure, the states that we assign 
to some computer S are in principle accessible to our direct control and 
unchanged by that control, since we may remove the cabinet and bypass the 
data channels with electronic voltmeters; but for pragmatic reasons we 
deliberately refrain from this direct control and limit ourselves to control 
through data channels which pass through a console that serves as a 
surrogate C. 

10. Let us call the logic we use for predicates about the whole system 
CS the CS logic. In the present work we restrict ourselves to classical 
automata and the CS logic is Boolean. If we wish to deal with interactive 
paradoxes in quantum automata (and any actual machine is a quantum 
system when we look at it hard enough) we would use a non-Boolean or 
quantum CS logic, describing the automaton by wave functions and opera- 
tors in the familiar quantum language. There may still be a difference in 
structure between the CS logic and the interactive logic, the logical analog 
of the dynamical difference between bare and renormalized mass. The 
methods used in this study also work for the more general case of non- 
Boolean CS logic. 

11. The interactive logic we study is that of S relative to C, and we 
hold both S and C fixed. A full relativity requires us to treat S and C 
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symmetrically, to consider a plurality of them, and to formulate what makes 
a system a control system. We leave these fascinating questions for later. 

3. T R A N S I T I O N  SYSTEMS 

12. Notation and terminology about spaces and systems. A space is a 
class of possibifities. If S is a space then S', S", and 'S are variables with S 
as domain, and SI, $2, iS and 2S are constant members of S. 

We mix Russell-Whitehead dot punctuation with parentheses as con- 
venient. The signs " : = "  and " = : "  indicate a definition and divide the 
expression defined from the defining. The colon abuts the defined. 

We use the following arrow notation for exponentials: 
S ~ T :=  (mappings: S---, T )  or the exponential with radix T and 

exponent S. Thus 2 ---, 3 = 9. 

Definition. CS is a transition system with state space S: = C is a subclass 
of the power SS ---, 2. That  is, each C'  is a class of ordered dyads S ' , 'S .  

Definition. S': C':'S: = the ordered dyad S' , 'S belongs to the class C'.  
This is the control relation. 

13. Interpretation. The interpretation of the control relation is defined 
in examples to follow. Briefly, the control relation S':C':'S means that the 
sequence S',  C', 'S of the three events S '  (: = S being in the state S'), C'(: = 
the input -ou tpu t  operation C'), 'S(: = S being in the s t a t e ' S )  is possible. 

Definition. S ' . C ' =  'S:='S is the one S" such that S':C':S"  holds. If 
for all S '  there is some 'S such that S ' -  C'  = 'S, we call C '  a function, and if 
every control is a function we call the system functional. 

Even if the control relation is functional, the system need not be 
deterministic: it may stop instead of making the one possible transition. In 
the work to come functional controls may be deleted. More important  are 
sub functional controls ( :=  partial functions: = functions from subclasses of S 
to S). We call S '  the initial state, 'S the final state, of the transition S ' .  'S. 

14. Boolean vector logic. A Boo&an vector (or matrix) is one whose 
elements are 0 (i.e., "false") and 1 (i.e., " t rue") .  Each subclass s of a space S 
may be regarded as a Boolean vector by taking the points of S in a fixed 
order S~, S 2 . . . . .  taking S '  as vector index, and taking as S '  component  of 
the vector s the Boolean ( : = 0  or 1) quantity s .S ' := 1 for S '  in s, = 0 
otherwise. In particular S itself is a row of l 's  only, and the null class 0 is a 
row of O's only. 

Likewise we regard a control C t as a Boolean matrix with matrix 
element S':C~:'S:= 1 for dyad S',  'S in C~, : - -0  otherwise. We write SS for 
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the matrix of l 's  only, and 0 for the matrix of O's. We call such a Boolean 
matrix a control matrix of the system. The system is specified by the class 
consisting of its control matrices. 

Definition. Let C l and C 2 be relations and the matrices representing 
them. The Boolean matrix product C~C 2 is the matrix representing the 
relational product C I �9 C 2. It is computed by multiplying the same elements 
one multiplies to compute the usual matrix product, but then combining 
these products by a Boolean join ( v )  rather than addition: 0 v 0  = 0 ,  
0 v l = l v 0 = l v l = l .  

15. Graph of CS. Definition. The (labeled) graph of a system CS is C 
regarded as a set of sets of ordered dyads S ' . ' S .  It is also the graphical 
representation of C by labeled arcs. A labeled arc 

C' 
S' ~ 'S 

is in the graph if and only if the control relation S':  C':'S holds. 

12 bis. Definition. S ' . C ' =  0:= the re  is no 'S such that S':C': 'S holds, 
and we say "S ' .  C '  stops the system." If S . C  1 = 0, we say "CI stops the 
system." In Boolean vector logic, the row representing the state S '  is 
annihilated by the control matrix C'.  

Definition. The final state class S - C '  of control C':  = the class of a l l ' S  
such that for some S', S': C':'S holds. In Boolean vector logic, the Boolean 
matrix product of S with C'. 

16. Example: The system S(n). The state space S has n points and will 
be identified with the cardinal n = (0 . . . . .  n - 1). The controls in C are the 
subfunctions in S ~ S. So the control matrices are those with exactly one 1 
on each row. 

This system may be pictured as a die with n faces, one of which is 
always "up . "  This system is functional. 

17. Example: The identity controller. This system has N states. For each 
state there is a control, an identity subfunction, testing for that state. We 
may take S, the space of states, to be N, the cardinal number  with N 
members  0 . . . . .  N -  1. The control space is 

v . . . .  

the class of all singlet subclasses of the diagonal of the Cartesian product 
SS. That is, 

S ' :C ' : ' S := .  S ' =  'S and C '=  ( S 'S ' )  
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Each control matrix is a projector on an axis of the S' frame and has one 1 
on its diagonal. 

18. Example: The counter. The space is again N. There is exactly one 
control C t in the space C. S ' -C  I. 'S if and only if ' S =  S ' +  1. Thus C~ 
"sequences" the state through the values 0, 1 . . . . .  N -  1, and stops on N -  1. 
The graph of this machine (in the sense of paragraph 15) is 

Ci Ci Ci 
So>-----~ S1, >--.~ . . .  >....~ SN 

The control matrix has l 's only in the diagonal above the principle diagonal. 
19. Example: The Mealy-Moore machine. The graph of a Mealy 

machine, defined by Hopcroft  and Ullmann 1979, is already the graph of a 
transition system. In the graph of a Mealy automaton, each arc bears two 
labels, one input and one output. From our point of view this distinction is 
not important. Both input and output are interactive control operations. We 
regard the pair of labels as a single label, and the space of such pairs is the 
control space C of our system. 

The Moore machine is the special case of a Mealy machine where the 
output of a transition depends only on the final state of the transition, and 
its representation by a transition system therefore follows. 

These machines have specified initial state in their original description. 
We prefer to leave the initial state indefinite. The special considerations 
required to impose a special initial state are simple and omitted. 

20. Example. The Moore Uncertainty Automaton (expressed as a transi- 
tion system instead of a Moore machine). The graph of this machine is 
Figure 1. 

The relation S: C: S holds in exactly the following cases: 

Sl:a':S 4, Sl:b:S 3 

Sz:a':S 4, S2:b':S 4 

S 3 : a : S  2, S 3 : b ' : S  4 

S 4 : a ' : S  4, S 4 : b : S  I 

With C 1 = a, C 2 = b, C 3 = a', C 4 = b', the control matrices are 

c~ = oooo c2= OOlO c~= OOOl G =  oooo 
oooo oooo OOOl oool 
OlOO oooo oooo OOOl 
oooo lOOO OOOl oooo 
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a t 

Fig. 1. Graph of the Moore uncertainty automaton.  The vertices are the states S I, S 2, S 3, $4. 
The arcs are labeled a, b, a ' ,  b'. The label neighbors the final state of the arc, thus directing the 
arc. The transitions labeled a ' ,  b' all lead to $4. Every transition to $4 results in output  0, while 
all others result in output  1. 

From the graph we see that the controls a, a '  distinguish S 2 from S 3 but 
confuse S 2 with Si, and the controls b, b' distinguish S 2 from S I but confuse 
S 2 with S 3. Thus one distinction is complementary to the other. 

21. Control sequences. Given a sequence of control operations, a system 
may act sequentially unless it reaches a state and a control for which no 
transition is possible, when it stops. In sequential operation, the final state 
of one event becomes the initial state of the next event. This leads us to 
formulate a more general kind of control operation called a control se- 
quence, including simple controls as special cases. A control sequence is the 
relational product of a sequence of control operations (considered as 
relations between states). The space Q of a control sequence ("queue") is: 

Q : =  1 v C v CC v CCC v . . . .  : seq(C) 

The terms in this join represent sequences of length 0, 1, 2, 3 . . . . .  and v 
represents the set-theoretic join. 

We extend concepts defined for control operations to control sequences 
in a natural way. For example, S':Q':'S is the relational product of the 
relations in the control sequence Q'. 

In Boolean vector logic, a control sequence of length L is represented 
by the Boolean product of L control matrices. Q'  = 0 means that the control 
sequence Q'  stops the system. SQ' is the final state class of the control 
sequence Q', and Q'S is the initial state class of Q'. 

We multiply two control sequences relationally, making Q a semigroup 
whose identity is the null sequence, which we designate by QI. If necessary 
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we adjoin the sequence-zero Q0, consisting of the control-zero Q0 only, with 
the property 

Q'Qo = 0 --- QoQ' 

for all Q'. Thus Q0 stops the system. In Boolean vector logic, Q0 is 
represented by the matrix 0 and Q~ is represented by the unit matrix. 

22. Definition. The possibility relation Q':p:Q" between control se- 
quences holds if and only if Q'Q"~ O. The orthogonality relation Q': o: Q" 
is the negation of the possibility relation. Q ' :o :Q" means that the control 
sequence Q'Q" stops the system whatever the initial state, and in Boolean 
vector logic that the Boolean product of the two sequential control matrices 
Q', Q" is the matrix 0. The value (true or false) of the possibility relation 
Q':p:Q" is that of the Boolean inner product SQ'.Q"S. 

Since the o relation is generally not symmetric, we say that Q' is 
initially orthogonal to Q" or excludes Q", and that Q" is finally orthogonal 
to Q', or is excluded by Q', when this relation holds. 

4. INTERACTIVE PREDICATE ALGEBRA OF A SYSTEM 

23. Lattice background A lattice is a partially ordered set L with dyadic 
Lu.b. (join) L ' vL"  and g.l.b. (conjoin) L'&L" for all L '  and L". If they 
exist, the overall lower bound and upper bound of the partially ordered set 
are called L0, the lattice-zero, and LI, the lattice-one. We write 

L ' ~  L"  

when L'  is in the partial order relation to L";  and L ' <  L"  if further 

L':* L";  and L ' < ' L "  if still further L ' <  L " <  L"  holds for no L "  
C = L . . . .  covers" L'). The multiplicity mult(L') of lattice element L'  is the 
greatest number of < '  signs that can be interpolated between L0 and L'  in 
a covering sequence, one of the form 

L 0 < " ' .  < ' L '  

Lattice elements of multiplicity 1,2 . . . . .  m are called singlets, doublets . . . . .  m- 
tuplets. For other concepts of lattice theory see Birkhoff and Von Neumann 
(1936), Birkhoff (1948), and Holland (1970). 

Lattice 2: = the (Boolean) lattice with two members L0, LI. 
Lattice (N ~ 2) (for any non-negative integer N): = the Boolean lattice 

of predicates of an object with N possibilities in its space: = the power set of 
the cardinal number N. 



762 Finkelstein and Finkelstein 

Lattice 1 + N + 1:= the lattice with 1 zero, N singlets, and 1 one, for 
any non-negative integer N. 

The smallest non-Boolean lattice is lattice 1 + 1 + 1. The smallest non- 
Boolean ortholattice is lattice 1 + 4 +  1. This is the simplest nonclassical 
quantum logic. 

24. Definition: The Kleene algebra. The Kleene algebra (actually a 
lattice) of the system CS: = 

K: = ( Q --+ 2) 

the lattice of subclasses of the control sequence space Q of paragraph 21. 
Members of K are predicates about control sequences, and some will be 
interactive predicates about S. 

K inherits from Q a natural semigroup multiplication: If K '  and K "  are 
subclasses of Q, the product K ' K " : = t h e  class of all sequential products 
Q'Q" for Q' in K', Q" in K".  The identity K1 of this semigroup is (ql),  the 
class whose only member is the null sequence. We designate the null class, 
the zero of this product, by K0. 

25. The central principle: To predicate is to exclude possibilities. One 
standard problem for us now is: If the past Q' belongs to given K', what is 
the class "K of all possible future "Q? Equivalently, and more conveniently, 
we ask for the complement 'K, the class of all 'Q excluded by K'. We write 
K '  _1_ for this class 'K. Our central principle is that each such initial class K '  
determines an initial predicate of the system, and that two classes K '  and 
K "  determine the same predicate if and only if they exclude the same future 
possibilities; that is, if and only if 

K'_I_ = K"  .1_ 

It is shown in the next paragraphs that this equality holds if and only if K '  
and K'" have the same "closure." These closures may therefore be identified 
1 - 1 with initial predicates of the system. 

26. Relation concepts. (Birkhoff 1948.) Let A : o : Z  be any dyadic rela- 
tion with "initial" domain A and "final" domain Z. In the quantum 
application A is the space of an initial determination, Z is that of a final 
determination, represented by a vector and a covector and o is orthogonal- 
ity. If a is any subclass of A, then a _1_ will mean the class of all members of 
Z standing in the relation o to every member of a. Dually we define _1_ z: 

a _k : = ( Z'  in Z: for all A' in a: A': o: Z')  

.J_z:=( A' i nA:  for all Z" inz :  A ' :o :Z ' )  

We call a _1_ the final o class of a, and _L z the initial o class of z. 
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In Boolean vector logic, A and Z are (diagonal vectors of) two possibly 
distinct spaces, a and z are subclasses and vectors in these spaces, and o is a 
Boolean form in the product of the two spaces dual to A and Z, a Boolean 
matrix with two covariant indices if A and Z have contravariant indices. Let 
n represent complementation: On = 1, In = 0. If v is a Boolean vector then 
vn is its complement; if m is a Boolean matrix then n mn  is its complement. 
Let p = (non) be the complement of the matrix o. Then a 3_ is represented 
by ( a p ) n ,  and 3_ z by ( p z ) n .  

There are the following tautologies, valid for any relation and classes: 
(i) 3_ reverses inclusion. 

I f  a <~ b then  b ,L <~. a ,L. 
I f y ~ < z  then 3-z.%< 3-y. 

(ii) a <~ _l_ ( a 3- ), z <... ( _L z ) _l_. 
Sometimes we omit parentheses when the association is clear, writing 

_1_ a,L and _l_z_C. 
27. The triple-3- identities. We deduce the inclusion a 3- >/ 3- a 3- 3- 

from (ii) by applying 3_ to both sides. We deduce the transposed inclusion 
a 3_ ~< 3_ a 3_ 3_ by substituting a 3_ for z in (ii). Therefore we have the 
important identities valid for any relation o 

_L a.J_ 3- = a 3 -  

_L 3-z_L = 3-z 

(Birkhoff, 1948.) They imply that m---, 3- m 3- = 3- 3- m 3_ 3_ is a closure 
operation, and we define the initial and final closure of subclasses a or z by 

e l ( a ) : =  3_ (a_L)  

( z ) c l : =  ( 3 - z )  3_ 

An initially (or finally) closed class is one equaling its initial (or final) 
closure. 

28. Definition. The initial (or final) lattice, L(o) (or (o)L),: = the class of 
initially (or finally) closed subclasses of the initial (or final) domain of o, 
partially ordered by inclusion. For each of these lattices we define two 
(dual) lattice operations " join" and "conjoin," and designate them by u 
and n ,  for both initial and final lattices. They generalize the Boolean 
operations or and  and,  respectively. The join a = a t u a 2 of two initial (or 
final) lattice members is the closure of the set-theory join: 

a I g a 2 : = c l ( a  t V a2)  

where x/ is the set-theory join (union). The conjoin of two lattice members  
is their set-theory conjoin (intersection). 
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Definition: The (Galois) connection of the relation o: = the pair of lattice 
dual morphisms 

Z -* .• z 

a - * a •  

The lattice property of these classes of classes does not depend on any 
postulated properties of the relation o, but holds identically for all o. 

29. Example: Boolean algebra. If A = Z is any class and A':o: Z ' : = ( A '  
Z'), then L(o) is the Boolean algebra A -* 2 of subclasses of A, the power 

set. Classical logic is founded on this example. 
30. Example: Projective geometry. If A is a linear space and Z is the 

dual space, and A':o:Z':=A'Z'=O (the vector A' is annulled by the 
covector Z'), then L(o) is the projective geometry of A, whose elements are 
the "flats" of A, the subspaces of A of all dimensions. Quantum logic is 
founded on this example. 

31. Lemma. If a and b are subclasses of A, then 

a •  = b •  

The left-to-right implication is clear from the definition of cl. The 
converse implication follows from the triple- • equation of 27. �9 

This lemma is important in connection with the central principle (25). 
It permits us to identify the Galois lattice of o with the predicate lattice of 
the transition system with orthogonality relation o. There is a further 
justification of this principle similar to the correspondence principle of 
quantum theory: In cases where an effective predicate algebra is already 
familiar, this principle agrees with established usage. These cases are the 
classical ones, like S(n), and the quantum ones, both discussed below. 

32. Definition. The interactive predicate lattices of a system are the 
initial and final lattices of the orthogonality relation of the system. (See 
paragraph 28.) We call members of these lattices initial and final predicates. 

Therefore if our knowledge about the past is expressed by a class K '  in 
the Kleene lattice of the system, the predicate expressing this knowledge is 
the initial closure cl(K'). 

33. Product. Besides the lattice join and conjoin, there is a natural 
time-ordered product of predicates in interactive logic. If K '  and K"  
represent interactive predicates, then we represent the product of these 
predicates by cl(K'K"),  the closure of the semigroup product for K (para- 
graph 24). This product coincides with the conjoin in Boolean logic, but in 
general is not commutative. 
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34. Example. The systems S(n),  the identity controller, and the counter 
of paragraphs 16 and following have for their initial lattice the Boolean 
lattice (n ---, 2). 

These cases illustrate how the lattice analysis sees through the console 
to the interactive state. The identity controller has n keys on its console, one 
for each state, while the counting system has only one key, and the system n 
has exponentially many (n ~ (n + 1)) keys. But all have the same predicate 
lattice, which is the Boolean one belonging to the state space S = n. This is 
because all three systems permit sufficient control of the internal state from 
the console. A predicate is uniquely defined by what excludes it, and for the 
counting system, actuating the one control C1 m times is excluded by any 
number of subsequent actuations greater than n - m, and not by any lesser 
number. These exclusions define the initial predicate uniquely. 

The following lemmas are useful in computing the interactive logics of 
automata. 

35. Lemma. If Q ' Q " =  Q '" then (Q " ) c l  ~< (Q')cl and cl(Q " )  
~< cl(Q"). This tells us that longer histories define stronger predi- 
cates. In particular, cl(Kl)  (where K l is the Kleene "lattice-one"; 
see paragraphs 23 and 24) is the predicate lattice-one: 

c l ( g l )  = LI 

36. Lemma. The (initial or final) lattice of an automaton (or of 
any finite dyadic relation, for that matter) consists of: 

The lattice-zero L0 (see paragraph 23). 

The closures cl(Q') of the individual control sequences Q'. 
The joins of the above. 

Proof seems otiose. 
37. Computing the lattice of  a system. Given the controls of a system, 

how do we compute its interactive predicate algebras? The following algo- 
rithm flows from the definition of paragraph 32. 

Preliminaries. Index the controls with indices C' , 'C  = C I . . . . .  C m and 
order the control sequences Q' according to numerical value, reading a 
sequence of controls as an integer in the base m + 1. Index the states with 
indices S', 'S = S m . . . . .  S,. We write $123, for example, for the class ( S  1 , Sz, $3) 
and for the Boolean vector S 1 + S z + S 3 of this class. We induce on the 
length L = 0, 1,2 . . . .  of the control sequences considered. For each L we 
form the list of all the Boolean vectors SQ" and 'QS for all Q' and 'Q of 
length ~< L. (These vectors represent the classes defined in paragraph 21.) 
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This list of classes defines the possibili ty relation Q' :  p:'Q by 

Q': p :'Q = SQ'. 'QS 

the Boolean inner product .  This relation defines the lattice we seek. 

A L G O R I T H M  
Step A. ( L  = 0.) List the Boolean vector  S = (1 . . . . .  1). 
Step B. ( Increment  L.)  Suppose  SQ' has been listed for  all Q '  of  length 

L -  1. List SQ'C' for all such SQ' and all C'. (Do  this until L = n.) This 
lists all the final state classes. 

Note: It  is permissible  to delete f rom the list any final state class SQ' 
expressible as the join of other  final state classes in the list, and all its 
suffixed forms SQ'C'... C". In par t icular  null classes and redundancies  may  
be deleted. 

Index the list with s '  = s I, s 2 . . . . .  
Step C. List all the initial state classes 'QS dually to steps A - B  for 

sequences 'Q of length ~< n. Index the list w i t h ' s  = is, 2 s . . . . .  
Step D. Compu te  the Boolean matr ix  s ' . ' s ,  the Boolean inner product  

of  all the listed initial and final vectors. This matr ix  represents  the possibil- 
ity relation p.  

Step E. Compu te  the final o class s '  _L of each class s ' .  
Step F. Compu te  the initial closure c l ( s ' ) =  n(p(s'_l_ )) of each s ' .  
Step G. Compu te  the v joins  (closures of  the v joins) of the classes of 

step F, paralleling steps E - F .  These const i tute  the initial lattice. 

38. The interactive predicate algebra of the Moore Uncertainty Automa- 
ton (see pa rag raph  20). We compute  this lattice as an example  of  the above 
algori thm. The  states are S I, $2, $3, & .  The  controls  are C t = a, C 2 = b, 
C 3 = a ' ,  C 4 = b'. We designate products  CIC 2... by C12.. .. Steps A and B 
generate  the following sequence of final state classes, where member s  later 
deleted by the Note  of  step B are starred. 

Step A: 

Step B: 

SC, = ( 0 m 0 ) = S 2 ,  

s =  (1111)* 

sc2 = (lOlO)*, = (OOOl)= s ,  

SC22 = (0010) = 83, SC32 = (1000) = S, 

Sequences with L > 2 generate  no new final state classes. Thus  s 1 = S I, 
�9 = = s ,  = &. 
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Step C: 

S =  (1111)* 

c , s =  (OOLO)*, c28= (1ool)*, c38= ( l l o i )  = 8124, 

C48= (O110) = 823 C 2 1 8 =  ( lO00)  = S i ,  C228= (0001) = 8 4  

Thus i s = S 1, 2s = $3, 3 s ~--- 8 4 ,  4 S ~" 8 2 3  , 5 S = 8 1 2 4  

Step D. The 4 • 5 Boolean matrix representing p is 

( s ' :p : ' s )  = 10001 

00011 
01010 
00101 

Step E. The o classes of  s) . . . . .  s 4 are represented by the Boolean vectors 
i n ' s  space 

s1_1_ = (01110), s2_1_ = (11100), s3_L = (10101), 

Step F. The initial closures of  st . . . . .  s4 are themselves: 

cl(S,) = &  . . . . .  cl(S4) =s4 

Step G. The distinct v joins of  the s '  are the lattice-one L I = Sj234 and 

3, v82= ( 1 1 0 0 ) = S , 2 ,  8 , ~ S  3 = (1110) = 8t23, 81 v 84 ~-- ( 1 0 0 1 ) = 3 1 4  

s2 8 =(0110)=82 , 82 84=(0101)=824, & s4=(0111)=s2 4 

S1v S2 ~ S 4 = (1101)=S ,24  

The 13 closures (including Lo) thus obtained constitute the initial lattice of  
the Moore  uncertainty au tomaton  (Figure 2). The dual calculation of the 
final lattice (omitted here) controls the accuracy, since it must  result in the 
dual lattice. 

LI 

Si24 Stz3 S~34 
314 S12 $24 $23 
s4 s, s2 s3 

Lo 

Fig. 2. Lattice of the Moore Uncertainty Automaton. Every element is a union of a set of the 
singlets S), S 2, S 3, $4 indicated by its suffix. For example 5'234 is the union S 2 v S 3 v S 4. The 
suffixes thus define the partial ordering of the lattice elements. This mode of representation is 
quite generally applicable to interactive predicate algebras. 

S 4 _L ~--- (11010) 
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Since S 2 = S2&(S I v S 3 ) ~ (S2&S ~ ) ~ (S2&S 3 ) = L 0, the tat tice is nondis- 
tributive. It is modular since all paths to any lattice point from L0 have the 
same length. It is not orthocomplementable since there are four singlets but 
only three cosinglets. 

This is not a quantumlike automaton, but something stranger. 
39. For any system, the initial lattice is atomistic, and there is a 

monotone (implication preserving) 1-1 map on the initial lattice into the 
lattice (S ---, 2) of the space of its states; and another such map on the final 
lattice. ("Atomistic" means every member is a union of singlets, "atoms.") 

Therefore interactive predicates, like S predicates, can be identified 
with certain (closed) classes of states, as far as there implication relations 
are concerned. Moreover, their conjoins are set-theoretic conjoins (intersec- 
tions). Their joins and negations, however, are not set theoretic. 

5. ABSTRACT TRANSITION SYSTEMS 

40. The transition system used to represent automata in the preceding 
two sections is concrete in that the controls act on given states. All that is 
used to construct the interactive predicate algebra, however, is semigroup Q 
of control sequences. In some physical situations there are no accessible 
classical states, but only a collection of control operations C generating a 
semigroup Q of control sequences. The outcome of an individual experiment 
with control sequence Q need not be determined by Q, except in the case 
Q = O, which stops the experiment. We call a semigroup Q with this 
interpretation an abstract transition system. The interactive predicate algebra 
of Q is again taken to be the Galois connection of the orthogonality relation 

Q ' : o : ' Q : = Q ' . ' Q = O  

41. Example: The system S(n, R). The following example is constructed 
to include the infinite predicate algebras used in quantum theory and also 
finite predicate algebras arising from finite automata. 

Let R be any ring. Elements of R are called R numbers. We will use R 
numbers as components of vectors and matrices and as values of inner 
products. The most important R's are 

R = C := the complex number field 

R = Z := the integers 

R = 7]p:= the integers modulo the integer p 

In orthodox quantum theory we use R = C, but just as the distinction 
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between real numbers and rational is unphysical, the distinctions between 
complex, integer, and mod-p quantum theories are somewhat unphysical, in 
the following sense: Any physical theory that can be expressed as a complex 
quantum theory can be expressed as closely as desired within an integer 
quantum theory, and for sufficiently large p within mod-p quantum theory. 

Definition. V(n, R):= the right module n ~ R:=  the class of n-compo- 
nent vectors with components in R, regarded as a right module. V(n, R) is a 
(right) linear space if R is a division algebra (i.e., field). We write a vector in 
V(n, R) as a row of n R numbers. 

Definition: M(n,R):=the ring of n • n matrices with elements in R. If v 
is a vector and m is a matrix, their natural product is written vm. 

Definition: S(n, R):= the abstract system with control semigroup 
M(n, R). 

When R = C ,  this becomes S(n,C), the (complex) quantum system 
with multiplicity (i.e., "degeneracy") n. We further abbreviate S(n,7/p) 
= :S(n, p). 

Definition." L(n,R)= L(o), where o is the orthogonality relation of the 
semigroup M(n, R). 

When R = C, this lattice is isomorphic to the lattice of subspaces of 
V(n,C), the predicate algebra of orthodox quantum theory. 

42. Example. The lattice 1 + 4 +  1 is isomorphic to L(2,3). 

Proof. The subspaces of V(2,3) are 0, V(2,3), and those defined by 
single binary vectors in V(2, 3). Every binary vector (a, b) with components 
in 7/3 can be brought to the form (a, 1) by scalar multiplication, since 7/3 is a 
field, except those of the form (a,0), which can be brought to the form 
(1,0). Therefore there are only four rays (one-dimensional subspaces) in this 
linear space, each determined by a vector according to the following list: 

s0:(0,1) 

Sl:(1,1)  

Sz:(2, 1) 

s3:(l,0) 

With the lattice constants L 0 and L~, these constitute the lattice 1 + 4 +  1. �9 
The lattice diagram for the lattice 1 + 4 +  1 is Figure 3. If R is infinite 

then each predicate of S(n, R) is a class containing an infinity of controls, 
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Fig. 3. Lattice 1 + 4 + 1. The lattice elements are L 0, the four singlets S t, S 2, S 3, Sa, and the 
doublet L I. Ascending paths represent the lattice order relation. 

matrices in M(n, R). A more economical  system with the same logic can be 

made  by singling out one of these matrices. This is done  in the most  
c o m m o n  formulat ion of q u a n t u m  theory: 

43. The quantum system S(n, R, *). 

Definition. (n,R)V, the dual module to V(n,R):=The set of l inear 
functions:  V(n, R ) ~  R. Elements of (n, R)V are called covectors when 
elements of V(n, R) are called vectors. 

Definition: *, the R conjugation: = Complex conjugat ion if R = C, : = the 
ident i ty  t ransformat ion  if R = Z or Zp. 

Definition: *, the adjoint operation on V(n, R) V (n, R) V: = The Hermi t ian  
adjoint  (complex conjugate  transpose) if R = C,: = the t ranspose if R = Z or 
Zp. If for some nonzero v in V(n, R), v*v = 0, * is called singular. For  n > 2 
and  R = Zp, * is singular. For  n = 2, * is is s ingular  for most  p bu t  not  for 
some primes p = 3, 7, 11 . . . . .  In  the usual way, * is extended to the matrices 
M(n, R):  

v(mu) = (vm*)u 

for any  vector v and  covector u. We call m in M(n, R) self-adjoint (with 
respect to *) if m = m*. 

Definition: Projector: = Idempoten t  self-adjoint m in M(n, R):  

re=ram=m* 

Definition: V(n,R,*):= V(n, R) with * as further element  of structure. 

Definition: S(n,R,*):=the abstract t ransi t ion system with semigroup 
generated by the projectors in M(n, R). 
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44. Examples of S(2, R, *). For some R this system represents an optical 
bench on which are mounted rotatable polarizing filters. The characteristic 
direction of such a polarizer, a ray in the plane of the polarizer, defines the 
control operation completely and is the prototype of all quantum ("psi") 
controls. Such a control may be represented nonuniquely by a unit vector C' 
in the ray. Malus's law, giving the conditional transition probability 

p = (C,*C,,) 2 

between two such polarizers with directions C' and C", in terms of the 
scalar product (C'*C") of their polarizer orientation vectors, is the proto- 
type of all quantum transition probabilities. In this example we do not see 
the state but only the controls and relations between them. In particular 
Malus tells us that two polarization controls are orthogonal in the systems 
sense (defined in paragraph 22) when their polarization vectors are orthogo- 
nal in the Euclidean sense, whence the name orthogonal for this logical 
relation. The simplest example of S(n, R, *) that exhibits quantum logic is 
S(2, 3, *), the four-state polarizer. 

If we represent each polarizer by a projector C' instead of a vector, 
Malus's law for transition probability reads 

P = tr(C'C")/tr(1) 

[Here tr(1) is the multiplicity, 2 for the photon polarizer.] We shall forget 
the probabilities provided by this law and remember just that the transition 
is possible if and only if the product of the operators is not 0. Control 
operations more general than polarization are represented by operators 
more general than projectors and may involve phase shift, rotation and 
attenuation. 

According to the optimism now conventional in quantum physics, we 
can measure any normal operator. (We consider only finite-dimensional 
Hilbert spaces.) In the same spirit we suppose any projector C' represents a 
possible control. We represent the sequential product of controls by the 
product of the corresponding projectors. We suppose that such an operation 
C is selected from a keyboard attached to the optical bench, at which, say, 
the binary code for a polarization, attenuation, or other control parameter 
may be entered as a control character. A photon is then sent into the control 
element. If the photon stops in the control element, the recoil is observed 
and lights a "stop" sign. Otherwise there is no output. 

More complex quanta than the photon, such as nuclei, atoms, and 
molecules, can undergo mechanized experiments of the same kind. Each 
control operation C corresponds to a generalized polarizer, an operation of 
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the kind represented by a projector in a Hilbert space associated with the 
quantum. The sequential combination of such control operations is associ- 
ated with the product of their projectors. It is peculiar to classical, com- 
mutative theories that such a product is again a projector. If this product is 
zero, the quantum stops in the experimental apparatus, and a new quantum 
must be produced for the next experiment. 

45. Hidden variables. In the present formulation there is a natural 
"hidden variables" problem: 

Given: the abstract transition system of a quantum theory, typically 
S(n,C).  

Find." a concrete transition system with the same semigroup (and hence 
the same interactive predicate algebra). 

The given semigroup is one of projective algebraic (say, complex) 
matrices, multiplied algebraically, and represents a quantum system. The 
desired semigroup is one of Boolean matrices, multiplied relationally, and 
may be taken to represent a classical automaton. There is a familiar trick for 
turning an abstract group into a concrete group of transformations: Let the 
group act on itself by group multiplication. This trick does not work for all 
semigroups, but it works for the ones that concern us. Here are some 
examples of "concretizations" of abstract transition systems. 

46. Example: The concrete S(2, 3, *). There are four states S1, $2, $3, $4 
and four controls C I, C 2, C 3, C 4. The control C,, is the class of all pairs 
(S,, ,Sn) with m ~ n  +2 modulo 4. 

This system represents operations performed on a beam of fight falling 
from above by a polarizing filter lying in a horizontal plane when the 
polarization direction is restricted to four essentially different possibilities, 
such as the compass points E, SE, S, and SW, which define the four control 
operations C 4, Cj, C 2, C 3. The graph of this finite automaton is Figure 4. The 
nth control Cn maps ruth state S,,, into S,, unless S m is diagonally opposite 
S n, which is the case m = n + 2 mod 4. 

47. Example: The Concrete S(n, R,*). This solves the above hidden 
variables problem for orthodox quantum theory as the special case R = C. 
We take the state space S of the automaton with transition system S(n, R, *) 
to be the class of singlet projectors in M(n,  R). This entails an exponential, 
possibly infinite, increase in the dimension of the control matrices when we 
pass from the n x n algebraic matrices of the quantum theory to the Boolean 
matrices of the concrete transition system, which is actually a deterministic 
automaton. We take the control space C = S. The control relation is defined 
by 

S ' :C ' : 'S :=S 'C ' . ' S  ~ 0 
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Fig. 4. Graph of the four-state polarizer. There are four vertices $1, $2, $3, $4 and 12 arcs. The 
control labels C~, C2, C3, C4 aIso direct the arc by standing next to the final state. This finite 
deterministic automaton is a hidden variables theory for the "quantum system" S(2,3). 

6. H E I S E N B E R G  RING OF A S YSTEM 

48. Once the interactive predicate algebra of an operational system has 
been determined, we may seek the algebra of coordinates of the system. The 
algebraic elements we seek include what are called the observables in 
quantum theory. Since the product of two observables is sometimes not 
truly observable, we call these elements operators in general. In the quantum 
case, the algebraic representation of the predicate lattice provides one for 
the control operations and the observables also. The operators of Boolean 
systems commute,  and those of quantum systems do not. It is well known 
that in both classical and quantum mechanics we identify each predicate 
with a projector in a linear algebra suited to the system. For systems in 
general, each physical quantity H (such as the Hamiltonian or energy), is 
defined in principle as a complete set of orthogonal predicates P(n) paired 
with values E(n) of the quantity, and, when an algebraic representation 
exists, is then identified with a spectral sum of its numerical values multiply- 
ing its projectors: 

H:=E(1)P(1)+ . . . E ( n ) P ( n )  

The association of a predicate with a projector in a ring is often tantamount  
to associating a predicate with an ideal, and thus to mapping the predicate 
lattice into the ideal lattice of the ring. 



774 Finkelstein and Finkelstein 

We call a ring used to represent the predicate lattice of a system in this 
way a ring of the system, and a Heisenberg ring of the system when more 
explicitness seems wanted. We write 

Ring(o) 

for the class of Heisenberg tings of a system with orthogonality relation o. 
49. If * is the transpose operation, reversing relations and products, 

then 

Ring(o*) = Ring( o)* 

50. The Kleene algebra of a system represents the system interactive 
predicate algebra much as a Heisenberg ring does. The predicates of the 
system may be identified with "ideals" of the Kleene algebra. K is neither 
linear algebra nor ring, but is an algebra in the sense of universal algebra, 
with the two semigroup operations K'K" and K 'V K "  obeying a distribu- 
tive law. The orthogonality relation defines a lattice of members of K, which 
we wish to map into a lattice of ideals of a ring, preferably a ring of 
matrices. 

An automaton now has two lattices associated with it: the Boolean one 
determined by its states, and the possibly non-Boolean interactive one. 
Similarly, the automaton may have two algebras of operators, the commuta- 
tive one of its space of states, and the possibly noncommutative interactive 
algebra. The relation between the two predicate lattices, and the two 
algebras, is not a homomorphism. Similarly, two partial algebras (in the 
sense of Kochen and Specker, 1967) may be defined and are not necessarily 
homomorphic. The hidden variable theory of Kochen and Specker pos- 
tulates such a homomorphism, and therefore does not describe the present 
models. 

Many of the benefits of an algebraic representation first appear when 
we compose simple systems to make composite systems. This kind of 
composition is also part of interactive logic, but of its set theory, not its 
predicate algebra, and will not be considered in this paper. 

51. Example. The identity controller system. A Heisenberg ring of the 
diagonal n-state system is the ring 

of integer-valued functions on the space S, here an n-tuplet, with the 
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addition and multiplication usual for integer-valued functions. The com- 
mutativity of this ring reflects the Boolean structure of the interactive 
predicate algebra of the system, and means that the operators of this system 
commute, as do all operators according to classical physics. 

52. Example: The four-state polarizer. A ring for this system is 
Ring(2, 3), consisting of 2 x 2 matrices with 2(3) coefficients 0, 1,2. Vectors 
for S(q = 1) an S(q -- - 1) may be chosen to be (1,0) and (0, 1); S(p = 1) 
and S(p = -  1) may be chosen to be (1, 1) and ( - I ,  1), which cannot be 
normalized to 1, however. With these assignments, the spectral sums define 
Hermitian operato.rs p and q, each a complete commuting set by itself, 
which do not commute: 

1 0 
q : = S ( q = l ) S ( q = l ) * - S ( q = - l ) S ( q = - l ) * =  0 - 1  

0 - 1  p:=S(p = l ) S ( p  = 1 ) * -  S(p = - 1)S(p = - 1)*= 
- 1  0 

0 1 pq - qp= 
- 1  0 

The matrices for p and q look like multiples of the familiar Pauli 
matrices, and have the noncommutativity typical of quantum systems, 
despite their origin in a deterministic automaton. Their elements, however, 
are integers modulo 3. The operators p and q are not observables of S in the 
classical sense, being undefined in some states. For example, no value o fp  is 
assigned to S(q = 1). They are interactive observables of CS. In domain CS, 
we model the control processes and their relations, not the quantities 
controlled. 

53. When the ring of operators of a system is the ring of a module, the 
model elements (" vectors") are here called predicate vectors of the system. 
Each defines a singlet predicate represented by the projector onto the 
vector. We see here how superposable predicate vectors or wave functions 
arise in a classical system with an interactive logic. 

7. CONCLUSIONS 

54. We have not answered Question I. Both the quantum and logical 
incompleteness limit the predictions a system can make about a subsystem, 
to be sure. Here, however, we have studied only such limitations as arise 
from interactivity, and interactivity seems irrelevant to GOdel incomplete- 
ness. Nevertheless interactivity gives rise to non-Boolean logics which 
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sometimes resemble quantum logic. To predict a system takes a more 
complex system (Chaitin, 1966, 1982). We have not touched upon the limits 
to our knowledge of an automaton imposed by the limited complexity of the 
observing system, ourselves. 

55. Instead we have answered Questions II, III, and IV: 
Both automata and quantum systems define transition systems and 

orthogonality relations. The predicate algebras of the interactive logics of 
these systems are the Galois lattices of their orthogonality relations. 

These predicate lattices differ in general from the Boolean predicate 
lattice of their state spaces because of the classical phenomenon of interac- 
tive interference, exemplified by the telephone busy signal (when we call our 
home, for example, to find out if the line is open, and thereby close the line 
to another caller.) 

56. Specifically, the classical paradox of interactivity can generate the 
quantum paradoxes. If quantum kinematics did not exist, we would have to 
invent it in order to cope with some interactive automata. The quantumlike 
(orthomodular nondistributive) logics of multiplicity < 2 are finite and can 
be simulated by finite automata, but not those of higher multiplicity. But 
predicate algebras like L(n, p) of paragraph 23 for large n and p >> n, when 
provided with a central ("superselection") square root of - 1 ,  seem good 
physical approximants to the standard quantum logics L (n ,C)  over the 
complex numbers C and are realized by the finite automata S(n, p) (see 
paragraph 41). These correspond to "Hilbert" spaces with a few self-orthog- 
onal vectors. 

57. Some finite automata exhibit interactive predicate algebras more 
deviant than those of quantum logic. For example, they may not admit any 
orthocomplement operation, singular or not. And some exhibit Boolean 
predicate algebras. 

58. Infinite automata can exhibit quantum predicate lattices L(n, C) of 
multiplicity n greater than 2, with infinitely many nonorthogonal singlet 
predicates. 

59. Implications for quantum physics. These models seem to suggest new 
approaches to quantum physics. 

There is still the main highway, where all obey the quantum principle 
of superposition, and basic physical theories use the usual quantum logic of 
Hilbert space or approximately equivalent discrete modules (Finkelstein 
1982). This route has a unity that is unprecedented in science and can never 
be achieved in a classical theory: Its predicates are part of and generate its 
transformations. 

But now a thin trail seems to double back toward the classical mode of 
thought about the possibility structure of a rnicrosystem, cutting across 
some of our most cherished principles. On this path we think of internal 
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states of a completely specifiable nature, hidden variables, without com- 
plementarity, and reconstruct quantum logic and quantum superposition at 
a higher level through the classical interference of controls, bypassing 
several well-known roadblocks on the main highway, such as the hidden 
variable theorems of Von Neumann (1932), and Kochen and Specker 
(1967). 

This construction differs from most attempts to derive quantum logic 
from hidden variables in that predicate vectors are not postulated but 
constructed, and are appropriately related to experiments by that construc- 
tion. Specifically each predicate vector describes neither the subject nor the 
object, but a history of interactions between them. As a result, predicate 
vectors are sometimes called "nonlocal," to distinguish how they relate to 
experiments from how physical fields relate to experiment, or are said to 
"collapse," because the beginning and end of an experiment may involve 
different controls. The predicate vectors constructed here have the relation 
to experiment sometimes expressed in these misleading ways. In the present 
theory there is no difficulty with the relation that exists in quantum theory 
between superposition of predicate vectors (ket vectors) and incompatibility 
or interference of experiments; nor with the multiplication of predicate 
vectors that represents the composition of systems. The rules for superposi- 
tion and multiplication of predicate vectors follow from their operational 
definition, and agree with quantum theory. 

It is not clear how far this trail goes. To push it further we must study 
how interactive predicate lattices compose when we build complex systems 
out of simple, and formulate an interactive set theory, as here we have 
formulated an interactive predicate algebra. For example, in order to study 
the Einstein-Podolsky-Rosen effect for automata, we must compose an 
automaton S of a line S = T. �9 �9 U- - �9 V of at least three simpler ones T, U, V 
with "coherent interaction" between C, T, U, and V, and study communica- 
tion from C to the central automaton U, to T and V, the two ends of the 
line, and back to C. 

The principles of special relativity also require us to extend our 
language to composite systems, those having spatial structure. 

60. Implications for systems theory. We have posed a basic question that 
should be asked about any system: What is its interactive predicate algebra 
(Question III)? An older question is: What are the states and transition 
function of the system? The simplest interactive system may exhibit quan- 
tum effects. For example, an interactive experimenter working with a finite 
deterministic automaton with transition system S(n, p) (for any positive 
integers n, p)  cannot describe the system better than with a "wave function" 
or transition amplitude, which will have n components belonging to the 
integers modulo p. Question III has the advantage that the predicate algebra 
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can be found from experiment and is often a more economical data 
structure than the states and the transition function. 

61. Irnplicationsfor logic. In this first paper, we have taken up only the 
interactive predicate lattice. We have hardly touched on the negation or 
orthocomplementation operation of the predicate algebra. Moreover, for 
application the statistical or probabihstic logic is more important than the 
possibilistic structure developed here. Finally, we have not formulated the 
levels of interactive logic corresponding to set theory. Interactive set theory 
is an aspect of interactive logic necessary for application to problems of 
large automata and artificial intelligence, which involve increasingly parallel 
control structure. Thus question I, questions of quantum physics, and 
questions of systems science and artificial intelligence all point to interactive 
set theory. 

There is a parallel between the evolutions of physical geometry and 
physical logic from absolute and static structures to contingent and dynamic 
ones (Finkelstein, 1966). Riemann's theory of curved surfaces, an inner 
model of non-Euclidean geometry within Euclidean, stimulated the evolu- 
tion of geometry from Euclid to Einstein. The present study likewise 
provides an inner model, now of non-Aristotelian logic within Aristotelian, 
and may stimulate the logical evolution. Previously, as described in 
Finkelstein (1966), working without such a guide, a dynamical logical 
structure was described by a quantum theory with hypercomplex (say, 
quaternion) amplitudes instead of complex. In the present models we find 
that "hypocomplex"  rather than hypercomplex systems arise naturally. By 
this we mean number systems smaller than the complex, not larger, with 
complex quantum logic as an ideal unattainable limit. The missing structure 
is not located outside our ken, in extra dimensions, but inside, in the fine 
structure of the dimensions we already know. 
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